

MDMER Toxicity Testing on 11A-Runoff

Sample collected on October 28 and November 13, 2019

Final Report

December 20, 2019

Submitted to: Nyrstar Myra Falls Ltd

Campbell River, BC

TABLE OF CONTENTS

		Pa	ige							
Signa	ature Pag	e	. iii							
Sum	mary		iv							
1.0	O Introduction									
2.0	Methods	S	1							
3.0	Results		6							
4.0	QA/QC		8							
5.0	Reference	ces	.10							
		List of Tables								
Table	e 1.	Summary of test conditions: Ceriodaphnia dubia survival and reproduction test	2							
Table	e 2.	Summary of test conditions: rainbow trout (<i>Oncorhynchus mykiss</i>) embryo viability test								
Table	e 3.	Summary of test conditions: <i>Lemna minor</i> growth inhibition test								
Table	e 4.	Summary of test conditions: <i>Pseudokirchneriella subcapitata</i> growth inhibition								
		test.	5							
Table	e 5.	Results: Ceriodaphnia dubia survival and reproduction test	6							
Table	e 6.	Results: rainbow trout (Oncorhynchus mykiss) embryo viability test	7							
Table	e 7.	Results: Lemna minor growth inhibition test	7							
Table	e 8.	Results: Pseudokirchneriella subcapitata growth inhibition test	8							
Table	۵ د	Reference toyicant test results	q							

List of Appendices

APPENDIX A – Ceriodaphnia dubia Toxicity Test Data

APPENDIX B – Oncorhynchus mykiss Toxicity Test Data

APPENDIX C – Lemna minor Toxicity Test Data

APPENDIX D – Pseudokirchneriella subcapitata Toxicity Test Data

APPENDIX E - Chain-of-Custody Forms

SIGNATURE PAGE

Report By:

Jeslin Wijaya, B.Sc Laboratory Biologist Reviewed By:

Armando Tang, R.P. Bio

Senior Reviewer

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

SUMMARY

Sample Information and Test Type

Sample ID	11A-Runoff
Sample collection date	October 28 and November 13, 2019
Sample receipt date	October 29 and November 15, 2019
Sample receipt temperature	10.7 and 13.3°C
	Ceriodaphnia dubia survival and reproduction
Tost types	7-d rainbow trout (Oncorhynchus mykiss) embryo viability
Test types	7-d <i>Lemna minor</i> growth inhibition
	72-h Pseudokirchneriella subcapitata growth inhibition

Summary of Results

Endpoint	% v/v (95% CL)	
Ceriodaphnia. dubia		
Survival LC50	>100	
Reproduction IC25	55.1 (37.3 – 74.8)	
Reproduction IC50	>100	
Oncorhynchus mykiss		
Embryo viability EC25	>100	
Embryo viability EC50	>100	
Lemna minor		
Frond count IC25	31.0 (11.4 – 62.8)	
Frond count IC50	73.3 (29.6 – 96.3)	
Dry weight IC25	30.8 (5.0 – 52.7)	
Dry weight IC50	>97	
Pseudokirchneriella subcapitata		
Growth IC25	>95.2	
Growth IC50	>95.2	

LC = Lethal Concentration, IC = Inhibition Concentration, EC = Effective Concentration, CL = Confidence Limits

1.0 INTRODUCTION

Nautilus Environmental Company Inc. conducted sub-lethal toxicity tests for Nyrstar Myra Falls Ltd. as part of their requirements under the Metal Diamond Mining Effluent Regulations (MDMER) program. Sample 11A-Runoff was collected on October 28, 2019 and delivered to the Nautilus Environmental laboratory in Burnaby, BC on October 29, 2019. The sample was transported in eight 20-L plastic containers and were received at a temperature of 10.7° C. The sample was stored in the dark at $4 \pm 2^{\circ}$ C prior to testing. The following sub-lethal toxicity tests were performed:

- Ceriodaphnia dubia survival and reproduction
- 7-d rainbow trout (Oncorhynchus mykiss) embryo viability

A second sample was collected on November 13, 2019 and was delivered on November 15, 2019. The sample was received at a temperature of 13.3°C. The following sub-lethal toxicity tests were performed:

- 7-d *Lemna minor* growth inhibition
- 72-h Pseudokirchneriella subcapitata growth inhibition

Testing for *C. dubia* and *O. mykiss* were initiated on October 29 and 30, 2019, respectively. Testing for *L. minor* and *P. subcapitata* were initiated on November 15, 2019. This report describes the results of these toxicity tests. Copies of raw laboratory data sheets and statistical analyses for each test species are provided in Appendices A to D. The chain-of-custody forms are provided in Appendix E.

2.0 METHODS

Methods for the toxicity tests are summarized in Tables 1 to 4. Testing using *C. dubia*, *L. minor* and *P. subcapitata* were conducted according to procedures described by Environment Canada (2007a, 2007b and 2007c). The rainbow trout embryo viability test followed procedures described by Environment Canada (1998) and modified by Canaria et al. (1999). Statistical analyses for all the tests were performed using CETIS (Tidepool Scientific Software, 2013).

Table 1. Summary of test conditions: *Ceriodaphnia dubia* survival and reproduction test.

Test species Ceriodaphnia dubia

Organism source In-house culture

Organism age <24 hour old neonates, produced within a 12 hour window

Test type Static-renewal Test duration $7 \pm 1 \text{ day}$

Test vessel 20-mL glass test tube

Test volume 15 mL
Test solution depth 10 cm

Test concentrations Seven concentrations, plus laboratory control

Test replicates 10 per treatment

Number of organisms 1 per replicate

20% Perrier water and 80% deionized water + 5 μ g/L Se and 2 Control/dilution water

μg/L vitamin B12

Test solution renewal Daily (100% renewal)

Test temperature $25 \pm 1^{\circ}C$

Feeding Daily with Pseudokirchneriella subcapitata and TCC¹ (3:1 ratio)

Light intensity 100 to 600 lux at water surface
Photoperiod 16 hours light / 8 hours dark

Aeration None

Temperature, dissolved oxygen, pH and conductivity measured

Test measurements daily; hardness and alkalinity of undiluted sample measured at

test initiation; survival and reproduction checked daily

Test protocol Environment Canada (2007a), EPS 1/RM/21

Statistical software CETIS Version 1.9.4

Test endpoints Survival and reproduction

≥80% survival; ≥15 young per surviving control producing three

Test acceptability criteria for controls broods; ≥60% of controls producing three or more broods; no

ephippia present

Reference toxicant Sodium chloride (NaCl)

¹TCC = Trout chow and cerophyl

Table 2. Summary of test conditions: rainbow trout (*Oncorhynchus mykiss*) embryo viability test.

Test species Oncorhynchus mykiss

Organism source Hatchery

Organism age <30 minutes post fertilization, <24 hour old gametes

Test type Static-renewal

Test duration 7 days

Test vessel 2-L plastic container

Test volume 2 L
Test solution depth 17 cm

Test concentrations Five concentrations, plus laboratory control

Test replicates 4 per treatment
Number of organisms 30 per replicate

Control/dilution water Dechlorinated Metro Vancouver municipal tapwater

Test solution renewal Daily (80% renewal)

Test temperature $14 \pm 1^{\circ}$ C Feeding None Light intensity Dark

Photoperiod 24 hours dark

Aeration Continuous gentle aeration

Temperature, dissolved oxygen, pH and conductivity measured

Test measurements daily; hardness and alkalinity of undiluted sample measured at

test initiation; survival checked daily

Test protocol Environment Canada (1998), EPS 1/RM/28; Canaria et al. (1999)

Statistical software CETIS Version 1.9.4
Test endpoint Embryo viability

Reference toxicant Sodium dodecyl sulphate (SDS)

Table 3. Summary of test conditions: *Lemna minor* growth inhibition test.

Test species Lemna minor, strain CPCC# 490

In-house axenic culture, obtained from Canadian Phycological

Organism source Culture Centre, and originally isolated from Wainfleet, Stinking

Barn, Niagara Peninsula, Ontario, Canada

Organism age 7- to 10-day old culture

Test type Static
Test duration 7 days

Test vessel 250-mL glass container

Test volume 100 mL
Test solution depth 4 cm

Test concentrations Seven concentrations, plus laboratory control

Test replicates 4 per treatment

Number of organisms Two 3-frond plants per replicate

Modified APHA media (deionized water plus 1% of each APHA Control/dilution water

stock solution A, B and C)

Test solution renewal None
Test temperature $25 \pm 2^{\circ}$ C
Feeding None

Light intensity 4000 to 5600 lux Photoperiod 24 hours light

Aeration None

Test area temperature measured daily; temperature, pH and

Test measurements conductivity measured in all concentrations at test initiation; dissolved oxygen of highest concentration measured at test

initiation; temperature and pH measured at test termination

Test protocol Environment Canada (2007b), EPS 1/RM/37

Statistical software CETIS Version 1.9.4

Test endpoints Number of fronds and dry weight

Test acceptability criterion for controls \geq 8-fold increase in number of fronds

Reference toxicant Potassium chloride (KCI)

Table 4. Summary of test conditions: *Pseudokirchneriella subcapitata* growth inhibition test.

Test species Pseudokirchneriella subcapitata, strain CPCC# 37

In-house axenic culture, obtained from Canadian Phycological

Organism source Culture Center, and originally isolated from Nivelta River,

Norway.

Organism age 3-to 7-day old culture in logarithmic growth phase

Test type Static
Test duration 72 hours
Test vessel Microplate
Test volume 220 µL

Test concentrations Seven concentrations, plus laboratory control
Test replicates 4 per treatment; 8 for laboratory control

Number of organisms 10,000 cells/mL

Control/dilution water Deionized water supplemented with nutrients

Test solution renewal None
Test temperature $24 \pm 2^{\circ}C$ Feeding None

Light intensity 3600 to 4400 lux Photoperiod 24 hours light

Aeration None

Test area temperature measured daily; temperature and pH

Test measurements measured at test initiation; pH of two control wells measured at

test termination

Test protocol Environment Canada (2007c), EPS 1/RM/25

Statistical software CETIS Version 1.9.4

Test endpoint Algal cell growth inhibition

Test acceptability criteria for controls >16-fold increase in number of algal cells; CV ≤ 20%; no trend

when analyzed using Mann-Kendall test

Reference toxicant Zinc (added as ZnSO₄)

3.0 RESULTS

Results of the toxicity tests are summarized in Tables 5 to 8. There were no adverse effects observed on survival of *C. dubia* (Table 5), embryo viability of *O. mykiss* (Table 6) or cell yield of *P. subcapitata* (Table 8), resulting in LC and IC values greater than the highest concentration tested.

Reduction in *C. dubia* reproduction was observed, resulting in an IC25 and IC50 of 55.1% and >100%, respectively. Moreover, adverse effects were observed in both *L. minor* test endpoints (Table 7). The frond count IC25 and IC50 were 31.0% and 73.3% (v/v), respectively; dry weight IC25 and IC50 were 30.8% and >97% (v/v), respectively.

Table 5. Results: Ceriodaphnia dubia survival and reproduction test.

Concentration (% v/v)	Survival (%)	Reproduction (Mean ± SD)
Laboratory Control	90	22.1 ± 7.1
1.56	100	24.8 ± 5.9
3.12	90	25.8 ± 3.4
6.25	100	22.7 ± 3.4
12.5	90	21.9 ± 4.4
25	90	21.2 ± 5.9
50	100	20.3 ± 6.3
100	100	14.2 ± 2.2
Test endpoint (% v/v)		
LC50	>100	
IC25 (95% CL)		55.1 (37.3 – 74.8)
IC50		>100

SD = Standard Deviation, LC = Lethal Concentration, IC = Inhibition Concentration, CL = Confidence Limits

Table 6. Results: rainbow trout (Oncorhynchus mykiss) embryo viability test.

Concentration (% v/v)	Embryo Viability (%) (Mean ± SD)
Laboratory Control	90.0 ± 9.8
6.25	95.0 ± 5.8
12.5	91.7 ± 10.4
25	95.0 ± 4.3
50	93.3 ± 9.0
100	85.0 ± 14.0
Test Endpoint (% v/v)	
EC25	>100
EC50	>100

SD = Standard Deviation, EC = Effective Concentration

 Table 7.
 Results: Lemna minor growth inhibition test.

	Frond Growth (No. of Fronds)	Dry Weight (mg)
Concentration (% v/v)	(Mean ± SD)	(Mean ± SD)
Laboratory Control	103.8 ± 19.6	9.2 ± 1.7
1.5	98.0 ± 5.6	8.7 ± 0.8
3.0	96.0 ± 24.3	8.3 ± 2.7
6.1	101.8 ± 12.1	8.8 ± 1.5
12.1	101.8 ± 3.6	8.1 ± 0.6
24.2	84.2 ± 10.4	7.4 ± 0.9
48.5	66.0 ± 15.3	6.0 ± 0.6
97	42.2 ± 5.0	5.3 ± 0.3
Test endpoint (% v/v)		
IC25 (95% CL)	31.0 (11.4 – 62.8)	30.8 (5.0 – 52.7)
IC50 (95% CL)	73.3 (29.6 – 96.3)	>97

SD = Standard Deviation, IC = Inhibition Concentration, CL = Confidence Limits

Table 8. Results: Pseudokirchneriella subcapitata growth inhibition test.

Concentration (% v/v)	Cell Yield (x 10 ⁴ cells/mL) (Mean ± SD)
Laboratory Control	37.2 ± 3.1
1.5	$49.5 \pm 4.5^{+}$
3.0	$53.8 \pm 4.4^{+}$
6.0	$67.8 \pm 2.5^{+}$
11.9	74.5 ± 5.1 ⁺
23.8	101.2 ± 2.5 ⁺
47.6	101.0 ± 9.4 ⁺
95.2	35.2 ± 2.9
Test endpoint (% v/v)	
IC25	>95.2
IC50	>95.2

SD = Standard Deviation, IC = Inhibition Concentration

4.0 QA/QC

The health history of the test organisms used in the exposures were acceptable and met the requirements of the Environment Canada protocols. The tests met all control acceptability criteria and water quality parameters remained within ranges specified in the protocols throughout the tests. Uncertainty associated with these tests is best described by the standard deviation around the mean and/or the confidence intervals around the point estimates.

There was a planned deviation from the 7-d rainbow trout embryo viability test methodology. The eggs were exposed using a blocked design (i.e., eggs from one fish was used for replicate A of each test concentration, eggs from the second fish for replicate B, and so on); this approach deviates from the Environment Canada test method, which indicates that the eggs should be pooled prior to testing. However, this modification is considered appropriate because it reduces the risk of non-viable eggs affecting the test results, since in the event that one of the batches of eggs had been non-viable, it would have been possible to exclude data for that replicate. There were no other deviations from the test methodologies.

[†] = The data did not fit the hormesis regression model; therefore, the cell yield was adjusted to that of the control value and analyzed using linear interpolation.

Results of the reference toxicant tests conducted during the testing program are summarized in Table 9. Results for these tests fell within the range for organism performance of the mean and two standard deviations, based on historical results obtained by the laboratory with these tests. Thus, the sensitivity of the organisms used in these tests was appropriate. The reference toxicant tests were performed under the same conditions as those used for the samples.

Table 9. Reference toxicant test results.

Test Species	Endpoint	Historical Mean (2 SD Range)	CV (%)	Test Date
C dubia	Survival (LC50): 2.1 g/L NaCl	2.0 (1.9 – 2.2)	4	Ostobor 16, 2010
C. dubia	Reproduction (IC50): 2.0 g/L NaCl	1.7 (1.2 – 2.4)	16	October 16, 2019
O. mykiss	Viability (EC50): 3.7 mg/L SDS	4.3 (2.3 – 8.2)	33	October 30, 2019
L. minor	No. Fronds (IC50): 3.6 g/L KCl	3.5 (3.0 – 4.1)	8	November 20, 2019
P. subcapitata	Growth (IC50): 26.6 μg/L Zn	31.6 (25.8 – 38.7)	10	November 22, 2019

SD = Standard Deviation, CV = Coefficient of Variation, LC = Lethal Concentration, IC = Inhibition Concentration, EC = Effective Concentration

5.0 REFERENCES

- Canaria, E.C., J.R. Elphick and H.C. Bailey. 1999. A simplified procedure for conducting small-scale short-term embryo toxicity tests with salmonids. Environ Toxicol 14:301-307.
- Environment Canada. 1998. Biological test method: toxicity tests using early life stages of salmonid fish (rainbow trout). Environmental Protection Series EPS 1/RM/28. Second Edition, July 1998. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 102 pp.
- Environment Canada. 2007a. Biological test method: test of reproduction and survival using the cladoceran *Ceriodaphnia dubia*. Environmental Protection Series. Report EPS 1/RM/21, Second Edition, February 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 74 pp.
- Environment Canada. 2007b. Biological test method: tests for measuring the inhibition of growth using the freshwater macrophyte, *Lemna minor*. Environmental Protection Series, Report EPS 1/RM/37. Second Edition. January 2007. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 112 pp.
- Environment Canada. 2007c. Biological test method: growth inhibition test using the freshwater alga. Environmental Protection Series, Report EPS 1/RM/25. Second Edition, March 2007. Environment Canada, Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON. 53 pp.
- Tidepool Scientific Software. 2013. CETIS comprehensive environmental toxicity information system, version 1.9.4.11 Tidepool Scientific Software, McKinleyville, CA. 275 pp.

APPENDIX A – Ceriodaphnia dubia Toxicity Test Data

Ceriodaphnia dubia Summary Sheet

Client: Work Order No.:	Nyrstar Myra Fal 192168	Start Date/Time:	Oct 29/19 @ 1100h MF/SSK				
Sample Information Sample ID: Sample Date: Date Received: Sample Volume: Test Organism Info	11A-Runoff Oct 28 19 Oct 29 19 8x20L	3) An average of ≥15 live your control solutions during the fir	ve produced three broods within 8 days ng produced per surviving female in the st three broods. d in any control solution at any time.				
Broodstock No.: Age of young (Day 0): Avg No. young in first 3 broods of previous 7 d: Mortality (%) in previous 7 d: Individual female # used ≥8 young on test day NaCl Reference Toxicant Results:							
Reference Toxicant Stock Solution ID: Date Initiated:	10: <u>Cd236</u> <u>19 NaO3</u> <u>Oct 16/19</u>						
7-d LC50 (95% CL): 7-d IC50 (95% CL):	2·1(1·5-3·0) 2·0(1·7-2·	g/L NaCL g/L NaCL					
	Toxicant Mean and Histori Toxicant Mean and Historic	7 - 2	Og/L NaCL CV (%): L+ Og/L NaCL CV (%): [6]				
Test Results:	_						
		Survival	Reproduction				
	LC50 % (v/v) (95% CL)	7100	55.1 (37.3-74.8)				
	IC25 % (v/v) (95% CL)		59.9(39.8-823) 554				
	IC50 % (v/v) (95% CL)		7100				
Reviewed by:	GW	Date revi	iewed: NN-14,2019				

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Work Order #:	Nyrst IIA I92	- Run	Myra	Falls	Ltd.	Start Date & Time: Oct 29/19@1100k Stop Date & Time: Nov05 19@1200k CER#: 4 Test Species: Ceriodaphnia dubia								
(449)											-			
						Days								
Concentration	0			- 2	?	3		4		1	-	1		7
control	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	25,0	25.0	24.0	25.0	25.0	C-25.	7-425	2010	24,0	25)2	240	2500	2500	25.0 7.0
DO (mg/L)	8.0	7.0	8.0	4.0	8.0	7.0	8.0	774	2.1	3.3	51	70	300	
pН	8.2	7.8	7.9	7.7	8-0	7.7	8-1	20	2,2	7.8	EL	7.8	8.2	7.8
Cond. (µS/cm)	215	21		21			-3san	- 1	118	21		rı		220
Initials	mf	per	F	SSV	٧	lu	rE_		m	A		M	u-	ssic
							Da	ys						
Concentration	0		1		2		3				5	- 6	3	7
1-56	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	25.0	24.0	25-0	24.0	250	24.0	2572	W-0	ಾನಾ	24,0	2520	24.0	45.0
DO (mg/L)	79	7-0	7.9	7.0	7.7	6.7	8-0	25	01	73	21	71	8.0	7.0
рН	8.2	7.8	8.0	7.8	8.0	7.7	8.0	2.9	20	77	To	7.7	8.1	7.0
Cond. (µS/cm)	221	27	23	27	26	22	3	2	31	2	34	22	3	227
Initials	mus	MA	F		SALL	5	RVL		A	2		SAL	1	ssk
		-,,.												
		Days												
Concentration	0		1		2		3		4		5		6	7
12-5	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	240	25.0	24.0	25-0	24.0	2500	,245	25.0	24,0	2572	24,0	250	24,0	25.0
DO (mg/L)	7.9	7.0	7.9	6-9	7.9	6.6	3.0	74	51	7.0	22	71	8.0	7.0
На	8.2	7.9	8.0	7.8	8.0	7.6	8.0	7.7	80	7.6	20	7.7	8.1	7.80
Cond. (µS/cm)	263	76		26	9		66		68	2	70	26	5	767
Initials	mux	M	11		SIHL	SAIL			3-		a		SAK	
														SSIE
							D	ays						
Concentration	0		1		2		3		4		5		6	7
(00)	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	25.0	24.0		24,1		24	25.0	24,2	20)3	We			
DO (mg/L)	8.2	7:0	8.0	7.0	8.1	6.6		7-2	R.Z	20	6.3	21	083	7.0
pH	375	7.2	7.4	7.3	7.3			33	74	7.3	3/5	7.2	7.2	7.3
Cond. (µS/cm)	576	51		5	79	5	79	573				5	83	575
Initials	my	1	MA		SAL		SIN		A	A			AK	SSK
(07.3)	-0(GAK	08.2	
Thermometer: <u></u>	DO met	er/probe	: <u> </u> [pH met	er/probe:			Conduc	tivity me	ter/prob	e: <u>\</u>	1	
	Co	ntrol	100	07.			-			Analy	oto:	NA 15. C	ck . Av	UD, SAK
Hardness*		00		30		_	\forall			Analy	515.	IAM 13	1-1.4	10.41
Alkalinity* 90 22 Reviewed by:														
* mg/L as CaCO3		100000000000000000000000000000000000000		T00.0	-				SSK	Date re	viewed	i. \	INI	4.2010
The second section of the second section secti		¥		ž.	1	1.	٨						0 1	11
Sample Description	n:			elow r b	tou,	redo	urle	4	me.	orga	nic	part	itula	te_
Comments: Broodboard Used: 10 23 1914 (#31-33, 35,39,40,42,43)														

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

Client: Sample ID: Work Order:	Nyrstar Myrafalla Ltd. 11A-RVNOFF 192168	(%v V)	tart Date & Time: OCT 29 19 @ 1100 W top Date & Time: NOV051 19 @ 11200 W Set up by: SSK/MU
Days Concent A E 1	3 C D E F G H I J Init J SSF J	Oncentration: 7.56 A B C D E F G H I J 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Concentration: 3 · 1 2 Init A B C D E F G H I J Init SK SK SK SK SK SK SK S
Days Concent A B 1 2 3 4 5 6 13 11 7 10 11 8	3 C D E F G H I J Init / SSK /	3 3 6 5 34 6 7 7 7 8 14 13 8 14 13 8 14 13	Concentration: 25 Init A B C D E F G H I J Init SSK SS
Total 20 1 Days Concentr A B 1	ration: 50 Co D E F G H 1 J Init Init	OV O	Concentration:
Notes: X = mort Comments: Reviewed by:		SSK ourth and subsequent broods not included in total co	Date reviewed: MH·I4, 7119

Client: Nyrstar Myrafalls Ltd w.o.#: 192168

Hardness and Alkalinity Datasheet

			Alkal	inity						
Sample ID IIA - RWOFF-	Subsample Date	Date Measured	Sample Volume (mL)	(mL) 0.02N HCL/H₂SO₄ used to pH 4.5	(mL) of 0.02N HCL/H₂SO ₄ used to pH 4.2	Total Alkalinity (mg/LCaCO ₃) 2/2	Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO₃) 230	Technician
20/Perrier	00229/19	octagli	100	9.2	9.4	90	50	5.0	100	Ssk
ı	,									

Notes: (1) Dilul	ed to 1	00mL	using	DI Water						
Reviewed by:		Ę	W			Date Reviewed		NOV. 10	4,2019	

CETIS Summary Report

Report Date: Test Code/ID: 14 Nov-19 17:12 (p 1 of 2) 192168 / 06-7968-7929

														20, 40
Ceriodaphn	ia 7-d Survival and	Reproduction	on Test								Nau	utilus Envir	onmer	ntal
Batch ID:	04-9836-0408	Test T	ype: Re	production-S	urvival (7d)			Ana	yst:	Saks	hi Singh			
Start Date:	29 Oct-19 11:00	Protoc	col: EC	/EPS 1/RM/2	1			Dilu	ent:	20%	Perrier Wat	er		
Ending Date	e: 05 Nov-19 12:00	Specie	es: Ce	riodaphnia du	ubia			Brin	e:					
Test Length	: 7d 1h	Taxon	: Bra	anchiopoda				Sou	rce:	In-Ho	ouse Culture	e	Age:	<24
Sample ID:	13-3821-2767	Code:	4F	C3819F				Proj	ect:					
Sample Date	e: 28 Oct-19 08:45	Materi	ial: W	ater Sample				Sou	rce:	Nyrst	tar Myra Fal	lls		
Receipt Dat	e: 29 Oct-19 08:57	CAS (I	PC):					Stat	ion:	11A-	Runoff			
Sample Age	e: 26h (10.7 °C)	Client	: Ny	rstar Myra Fa	ills									
Point Estim	ate Summary	<u> </u>												
Analysis ID	Endpoint	I	Point Es	timate Metho	d		/	Level	%		95% LCL	95% UCL	TU	5
06-5638-181	10 7d Survival Rate	l	Linear Int	erpolation (IC	PIN)			EC5	>100		n/a	n/a	<1	1
								EC10	>100		n/a	n/a	<1	
								EC15	>100		n/a	n/a	<1	
								EC20	>100		n/a	n/a	<1	
								EC25	>100		n/a	n/a	<1	
								EC40	>100		n/a	n/a	<1	
40 0770 000						.,,,,	_	EC50	>100		n/a	n/a	<1	
19-0//2-938	33 Reproduction	ji	NLR: 3P	Log-Gompert	Z			IC5	9.409		n/a	20	10.63	
							/	IC10	19.68	3	6.193	34.48	5.081	1
								1045	00.00		44.00	10.01	0.05	
							1	IC15	30.69		14.82	48.24	3.258	3
							1	IC20	42.4	3	25.51	61.27	2.354	3 4
							111	IC20 IC25	42.4 55.1	3 1	25.51 37.33	61.27 74.84	2.354 1.814	3 4 4
							1111	IC20 IC25 IC40	42.4 55.1 99.2	3 1 9	25.51 37.33 66.38	61.27 74.84 139.1	2.354 1.814 1.007	3 4 4 7
7d Sunvival	Pata Summani						1111	IC20 IC25	42.4 55.1	3 1 9	25.51 37.33	61.27 74.84	2.354 1.814	3 4 4 7
	Rate Summary	Count	Mean	95% I CI	95% LICI	Min	////	IC20 IC25 IC40 IC50	42.46 55.1 99.29 135.4	3 1 9 3	25.51 37.33 66.38 77.94	61.27 74.84 139.1 218.6	2.354 1.814 1.007 0.736	3 4 4 7 65
Conc-%	Code	and the state of t	M ean	95% LCL	95% UCL	Min	////	IC20 IC25 IC40 IC50	42.44 55.1 99.29 135.4	3 1 9 3 Err	25.51 37.33 66.38 77.94 Std Dev	61.27 74.84 139.1 218.6	2.354 1.814 1.007 0.736	3 4 4 7 65 ect
Conc-%		10	0.9000	0.6738	1.0000	0.0000	////	IC20 IC25 IC40 IC50 Max 1.0000	42.44 55.1 99.29 135.3 Std I	3 1 9 3 <u>Err</u>	25.51 37.33 66.38 77.94 Std Dev 0.3162	61.27 74.84 139.1 218.6 CV% 35.14%	2.354 1.814 1.007 0.736 %Eff 0.009	3 4 4 7 55 ect %
Conc-% 0 1.56	Code	10 10	0.9000 1.0000	0.6738 1.0000	1.0000 1.0000	0.0000 1.0000	////	IC20 IC25 IC40 IC50 Max 1.0000 1.0000	42.44 55.1 99.29 135.4 Std I 0.100	Err 00	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000	61.27 74.84 139.1 218.6 CV% 35.14% 0.00%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1	3 4 4 7 65 ect % 1%
Conc-% 0 1.56 3.12	Code	10 10 10	0.9000 1.0000 0.9000	0.6738 1.0000 0.6738	1.0000 1.0000 1.0000	0.0000 1.0000 0.0000	1 1 1 1	IC20 IC25 IC40 IC50 Max 1.0000 1.0000	42.44 55.1 99.2 135.4 Std I 0.10 0.00 0.10	B Err 00 00	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1	3 4 4 7 65 ect % 1%
Conc-% 0 1.56 3.12 6.25	Code	10 10 10 10	0.9000 1.0000	0.6738 1.0000	1.0000 1.0000 1.0000 1.0000	0.0000 1.0000 0.0000 1.0000	1 1 1 1	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000	42.44 55.1 99.2 135.3 Std I 0.10 0.00 0.10 0.00	3 1 9 3 Err 00 00 00	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00%	2.35 ⁴ 1.81 ⁴ 1.007 0.736 %Eff 0.009 -11.1	3 4 4 7 7 555 Sect 1% 1%
Conc-% 0 1.56 3.12 6.25 12.5	Code	10 10 10 10 10	0.9000 1.0000 0.9000 1.0000	0.6738 1.0000 0.6738 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 1.0000 0.0000 1.0000 0.0000	1 1 1 1	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000	42.4i 55.1' 99.2! 135.i Std I 0.10' 0.00' 0.10' 0.00' 0.10'	3 1 9 3 3 Err 00 00 00 00	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009	3 4 4 7 7 555 *** 1% 1% 1%
Conc-% 0 1.56 3.12 6.25 12.5 25	Code	10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738	1.0000 1.0000 1.0000 1.0000	0.0000 1.0000 0.0000 1.0000	1 1 1 1	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000	42.4i 55.1' 99.2! 135.i Std I 0.10' 0.00' 0.10' 0.00' 0.10' 0.10'	3 1 9 3 5 5 00 00 00 00 00	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162 0.3162	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14% 35.14%	2.35 ⁴ 1.81 ⁴ 1.007 0.736 %Eff 0.009 -11.1 0.009 0.009	3 4 4 7 7 65 5 Fect % 1% 1% 1%
Conc-% 0 1.56 3.12 6.25 12.5	Code	10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000	0.6738 1.0000 0.6738 1.0000 0.6738	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 1.0000 0.0000 1.0000 0.0000	1 1 1 1	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000	42.4i 55.1' 99.2! 135.i Std I 0.10' 0.00' 0.10' 0.00' 0.10'	Err 00 00 00 00 00 00 00 00 00 00 00 00 0	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009	3 4 4 7 7 555 ** 1% % 1% ** 1%
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100	Code	10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000	1 1 1 1	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	42.4i 55.1' 99.2i 135.i Std I 0.10' 0.00' 0.10' 0.00 0.10' 0.10 0.10' 0.10' 0.10'	Err 00 00 00 00 00 00 00 00 00 00 00 00 0	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.3162 0.3162 0.3162 0.0000	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14% 0.00%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 0.009 -11.1	3 4 4 4 7 7 555 ** 1% % 1% ** 1% ** 1%
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti	Code N Son Summary Code	10 10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000	1 1 1 1	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	42.4i 55.1' 99.2i 135.i Std I 0.10' 0.00' 0.10' 0.00 0.10' 0.10 0.10' 0.10' 0.10'	Err 000 000 000 000 000 000 000 000 000	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.3162 0.3162 0.3162 0.0000	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14% 0.00%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 0.009 -11.1	3 4 4 7 7 655 1% 1% % 1% %
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti Conc-% 0	Code N	10 10 10 10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000	/ / / /	Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	42.44 55.11 99.21 135.4 Std I 0.10 0.00 0.10 0.10 0.10 0.00 0.10 0.00 0.10 0.00	Err	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.3162 0.3162 0.0000 0.3000	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14% 0.00% 0.00%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 -11.1 1.101	3 4 4 4 7 7 655 1% 1% 1% 1% 1%
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti Conc-% 0 1.56	Code N Son Summary Code	10 10 10 10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000 1.0000	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL	0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000	/ / / /	Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	42.44 55.11 99.21 135.4 Std I 0.100 0.000 0.100 0.100 0.000 0.100 0.000 0.100 0.000	Err 000 000 000 000 Err 3	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.3162 0.0000 0.0000 Std Dev	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 0.00% 0.00%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 -11.1 0.009 -11.1 -11.1	33 44 44 77 555 1% 1% 1% 1% 11%
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti Conc-% 0 1.56 3.12	Code N Son Summary Code	10 10 10 10 10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000 1.0000 Mean 22.1 24.8 25.8	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 27.15	0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000	/ / / /	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 26	42.4i 55.1 99.2i 135.i Std I 0.10i 0.00i 0.10i 0.00i 0.10 0.00i Std 2.23	Err 33 99	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162 0.0000 0.0000 Std Dev 7.062	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 0.00% 0.00% CV% 31.96%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 -11.1 -11.1 %Eff	33 4 4 7 7 655 1% 1% % 11% 11% 11%
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti Conc-% 0 1.56 3.12 6.25	Code N Son Summary Code	10 10 10 10 10 10 10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000 1.0000 Mean 22.1 24.8 25.8 22.7	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000 1.0000 95% LCL 17.05 20.55	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 27.15 29.05	0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 Min 3	/ / / /	IC20 IC25 IC40 IC50 Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 26 31	42.44 55.11 99.21 135.3 Std I 0.10 0.00 0.10 0.00 0.10 0.00 0.00 0.0	Err 33 99 22	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162 0.0000 0.0000 Std Dev 7.062 5.94	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 0.00% 0.00% CV% 31.96% 23.95%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 -11.1 -11.1 %Eff 0.009 -12.2	3 4 4 7 65 5 1% 1% 1% 1% 1% 1% 1% 1% 222%
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti Conc-% 0 1.56 3.12 6.25 12.5	Code N Son Summary Code	10 10 10 10 10 10 10 10 10 10 10 10 10	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000 1.0000 Mean 22.1 24.8 25.8 22.7 21.9	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000 1.0000 95% LCL 17.05 20.55 23.4	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 27.15 29.05 28.2	0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 Min 3 16 22	/ / / /	Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	42.44 55.11 99.21 135.3 Std I 0.10 0.00 0.10 0.00 0.10 0.00 0.00 0.0	Err 33 9 2 2 6 6	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162 0.0000 0.0000 Std Dev 7.062 5.94 3.36	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 0.00% 0.00% 31.96% 23.95% 13.02%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 -11.1 -11.1 %Eff 0.009 -12.2 -16.7	3 4 4 7 65 65 1% 1% 1% 1% 11% 11% 122% 74% 19%
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti Conc-% 0 1.56 3.12 6.25 12.5 25 25	Code N Son Summary Code	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000 1.0000 Mean 22.1 24.8 25.8 22.7 21.9 21.2	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000 1.0000 95% LCL 17.05 20.55 23.4 20.24	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 27.15 29.05 28.2 25.16	0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 Min 3 16 22 19	/ / / /	Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 26 31 32 31	42.44 55.11 99.22 135.3 Std I 0.10 0.00 0.10 0.00 0.10 0.00 0.00 0.0	Err 33 9 9 2 2 6 6 2 2	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162 0.0000 0.0000 Std Dev 7.062 5.94 3.36 3.433	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14% 0.00% CV% 31.96% 23.95% 13.02% 15.13%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 -11.1 -11.1 %Eff 0.009 -12.2 -16.7 -2.71	3 4 4 7 555 1% 1% % 11% 18 19 19 19 19 19 19 19 19 19 19 19 19 19
Conc-% 0 1.56 3.12 6.25 12.5 25 50 100 Reproducti Conc-% 0 1.56 3.12 6.25	Code N Son Summary Code	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.9000 1.0000 0.9000 1.0000 0.9000 0.9000 1.0000 1.0000 Mean 22.1 24.8 25.8 22.7 21.9	0.6738 1.0000 0.6738 1.0000 0.6738 0.6738 1.0000 1.0000 95% LCL 17.05 20.55 23.4 20.24 18.73	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 27.15 29.05 28.2 25.16 25.07	0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 Min 3 16 22 19 13	/ / / /	Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	42.44 55.11 99.21 135.3 Std I 0.10 0.00 0.10 0.00 0.10 0.00 0.00 0.0	Err 33 99 22 66 22 7	25.51 37.33 66.38 77.94 Std Dev 0.3162 0.0000 0.3162 0.0000 0.3162 0.0000 0.0000 Std Dev 7.062 5.94 3.36 3.433 4.433	61.27 74.84 139.1 218.6 CV% 35.14% 0.00% 35.14% 0.00% 35.14% 0.00% 0.00% CV% 31.96% 23.95% 13.02% 15.13% 20.24%	2.354 1.814 1.007 0.736 %Eff 0.009 -11.1 0.009 -11.1 -11.1 %Eff 0.009 -12.2 -16.7 -2.71 0.909	33 4 4 7 7 555 1% 1% % 11% 1% 1% 14% 14% 14% 14% 14% 1

Report Date: Test Code/ID: 14 Nov-19 17:12 (p 2 of 2) 192168 / 06-7968-7929

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus	Environmental
-----------------	---------------

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	N	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.56		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3.12		1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12.5		1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Reproduction	Detail		***************************************								
Cono %	Codo	Dan 4	D 2	D 2	D 4	D 5	D C	D 7	D 0	D 0	D 40

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	N	3	25	23	26	26	20	26	25	21	26
1.56		16	19	31	30	31	18	27	20	26	30
3.12		25	26	22	25	24	23	23	32	31	27
6.25		23	19	21	22	19	25	22	23	22	31
12.5		20	26	13	23	17	22	27	22	22	27
25		29	23	24	20	24	22	21	21	22	6
50		25	29	17	15	8	26	23	19	17	24
100		12	13	15	12	14	13	17	17	12	17

7d Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	N	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
1.56		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
3.12		1/1	1/1	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
6.25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
12.5		1/1	1/1	1/1	1/1	1/1	0/1	1/1	1/1	1/1	1/1
25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	0/1
50		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
100		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

Analyst: 59 QA: NN-1419

Report Date:

20 Dec-19 13:21 (p 1 of 2)

Test Code/ID:

192168 / 06-7968-7929

Ceriodaphnia 7	'-d Survival and	Reproduc	tion Te	est						Nautilus Er	nvironmental
	06-5638-1810		2012031111111	7d Survival Rat			C	ETIS Version	n: CETIS	Sv1.9.4	
Analyzed: 0	7 Nov-19 16:14	Anal	lysis:	Linear Interpola	tion (ICPIN	1)		Status Level:	1		
	04-9836-0408)			akshi Singh		
	29 Oct-19 11:00		ocol:	EC/EPS 1/RM/2	400				0% Perrier \	Water	
Ending Date: 0		200	cies:	Ceriodaphnia d	ubia			Brine:		500	1 12 2
Test Length: 7	a in	Taxo	on:	Branchiopoda				Source: In	-House Cu	lture	Age: <24
8	13-3821-2767	Cod		4FC3819F				Project:			
Sample Date: 2			erial:	Water Sample					yrstar Myra	Falls	
Receipt Date: 2 Sample Age: 2		CAS	(PC):	Nyrstar Myra Fa	alls			Station: 1	1A-Runoff		
Linear Interpol	COLUMN TO THE	37.11.5	22.040	- Tyrotan myra r				0	= = =		
X Transform	Y Transform	See	d	Resamples	Exp 95%	CI Met	thod				
Log(X+1)	Linear	1640		200	Yes		800000	terpolation			
Point Estimate	s				N 9851						
Level %	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC5 >100	n/a	n/a	<1	n/a	n/a	•				202.7500	· · · · · · · · · · · · · · · · · · ·
EC10 >100	n/a	n/a	<1	n/a	n/a			9			
EC15 >100	n/a	n/a	<1	n/a	n/a						
EC20 >100	n/a	n/a	<1	n/a	n/a						
EC25 >100 EC40 >100	n/a	n/a	<1	n/a	n/a						
EC50 >100	n/a n/a	n/a n/a	<1 <1	n/a	n/a						
		11/a	>1	n/a	n/a	THE PROPERTY OF					
7d Survival Ra	(5)					ulated Vari				Isot	onic Variate
Conc-%	Code	Count	Mean		Max	Std Dev		%Effec		Mean	%Effect
0 1.56	N	10	0.900		1.0000	0.3162	35.14		9/10	0.95	0.0%
3.12		10 10	1.000		1.0000	0.0000	0.00%			0.95	0.0%
6.25		10	1.000		1.0000 1.0000	0.3162 0.0000	35.14 0.00%		9/10	0.95	0.0%
12.5		10	0.900		1.0000	0.3162	35.14		6 10/10 9/10	0.95 0.95	0.0% 0.0%
25		10	0.900		1.0000	0.3162	35.14		9/10	0.95	0.0%
50		10	1.000		1.0000	0.0000	0.00%			0.95	0.0%
100		10	1.000	0 1.0000	1.0000	0.0000	0.00%		700 05000000000	0.95	0.0%
7d Survival Ra	te Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	N	0.0000	1.000	0 1.0000	1.0000	1.0000	1.000		1.0000	1.0000	
1.56		1.0000	1.000	0 1.0000	1.0000	1.0000	1.000	0 1.0000	1.0000	1.0000	1.0000
3.12		1.0000	1.000		1.0000	1.0000	1.000	0 1.0000	1.0000	1.0000	1.0000
6.25		1.0000	1.000		1.0000	1.0000	1.000	0 1.0000	1.0000	1.0000	1.0000
12.5		1.0000	1.000		1.0000	1.0000	0.000		1.0000	1.0000	1.0000
25 50		1.0000	1.000		1.0000	1.0000	1.000		1.0000		
100		1.0000	1.000		1.0000	1.0000	1.000		1.0000		
7d Survival Ra	te Rinomiala	1.0000	1.000	1.0000	1.0000	1.0000	1.000	0 1.0000	1.0000	1.0000	1.0000
Conc-%	Code	Pan 1	Da- 6	Dam 1	D	-	9000000 P	g <u>sam</u> et dan e		5 <u>22</u> 0 524	
0	N	Rep 1 0/1	1/1	Rep 3	1/1	Rep 5	1/1	Rep 7	1/1	Rep 9	Rep 10
1.56	100 PM	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1 1/1	1/1
3.12		1/1	1/1	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1 1/1
6.25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
12.5		1/1	1/1	1/1	1/1	1/1	0/1	1/1	1/1	1/1	1/1
25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	0/1
50		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
100		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1//
005 000 0:=											all
005-603-817-4				C	ETIS™ v1	.9.4.11			Analyst:	UVV	QA: Dec-201

Report Date:

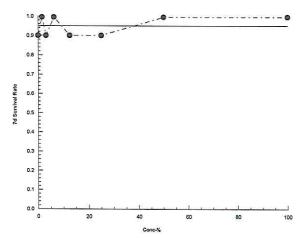
20 Dec-19 13:21 (p 2 of 2)

Test Code/ID: 192168 / 06-7968-7929

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

Analyzed:

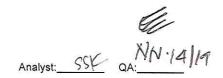

Analysis ID: 06-5638-1810 07 Nov-19 16:14 Endpoint: 7d Survival Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version: Status Level:

CETISv1.9.4

Graphics



Report Date:

14 Nov-19 17:10 (p 1 of 2)

Test Code/ID: 192168 / 06-7968-7929

Cerioda	aphnia 7-d	Survival and	d Reproduc	tion Test				2.10		N	autilus Env	ironmental
Analysi Analyze		0772-9383 Nov-19 17:10	-	COMPACTORIAN SOCIEDAN	roduction linear Regre	ession (NLR)	V=-147	S Version: is Level:	CETISv 1	1.9.4	
Batch I	D: 04-9	9836-0408	Test	Type: Rep	roduction-S	urvival (7d)		Analy	yst: Saksh	ni Singh		
Start Da	ate: 29	Oct-19 11:00	Prot	ocol: EC/I	EPS 1/RM/2	<u>?</u> 1		Dilue	ent: 20% l	Perrier W	ater ater	
Ending	Date: 05 l	Nov-19 12:00	Spec	ies: Ceri	odaphnia du	ubia		Brine) :			
Test Le	ngth: 7d	1h	Taxo	n: Brar	nchiopoda			Sour	ce: In-Ho	use Cultu	ıre	Age: <24
Sample	ID: 13-	3821-2767	Code	e: 4FC	3819F			Proje	ect:			
Sample	Date: 28	Oct-19 08:45	Mate	rial: Wat	er Sample			Sour	ce: Nyrst	ar Myra F	alls	
Receip	t Date: 29	Oct-19 08:57	CAS	(PC):				Stati	on: 11A-F	Runoff		
Sample	Age: 26h	(10.7 °C)	Clier	nt: Nyrs	star Myra Fa	ılls						
Non-Li	near Regre	ssion Optio	ns									
Model	Name and	Function				Weighting	Function		PTBS Fund	ction	X Trans	Y Trans
3P Log-	-Gompertz:	μ=α·exp[log[0.5]·[x/δ]^γ]			Normal [ω	=1]		Off [µ*=µ]		None	None
Regres	sion Sumr	mary										
Iters	Log LL	AlCc	BIC	Adj R2	Optimize	F Stat	Critical	P-Value	Decision(o	:5%)		
10	-117.6	241.5	248.2	0.3373	Yes	0.7322	2.344	0.6017	Non-Signifi		c of Fit	
Point E	stimates							In the second second				
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
IC5	9.409	n/a	20	10.63	4.999	n/a						
IC10	19.68	6.193	34.48	5.081	2.9	16.15						
IC15	30.69	14.82	48.24	3.258	2.073	6.75			30			
IC20	42.48	25.51	61.27	2.354	1.632	3.92						
IC25	55.11	37.33	74.84	1.814	1.336	2.679						
IC40	99.29	66.38	139.1	1.007	0.7187	1.507						
IC50	135.8	77.94	218.6	0.7365	0.4575	1.283						
Regres	sion Para	meters										
Param	eter	Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision	(α:5%)			
α		24.61	0.9607	22.7	26.52	25.62	<1.0E-37	Significan	t Parameter			
Υ		0.9754	0.3532	0.2719	1.679	2.761	0.0072		t Parameter			
δ		135.8	31.91	72.22	199.3	4.255	5.9E-05	Significan	t Parameter			
ANOVA	A Table											
Source)	Sum Squ	ares Mea	n Square	DF	F Stat	P-Value	Decision	(α:5%)			
Model		38590	128	50	3	639	<1.0E-37	Significan	t			
Lack of		75.03	15.0	1	5	0.7322	0.6017	Non-Sign	ificant			
Pure E Residu		1455	20.4		71							
		1530	20.1	3	76						=======================================	
	ıal Analysi											
Attribu	200 0	Method			Test Stat	Critical	P-Value	Decision	(α:5%)			
	e Value		xtreme Valu		3.51	3.302	0.0206	Outlier De	etected	-		
Variand			ne Equality		1.857	2.143	0.0899	Equal Va				
Distribu	ution		Vilk W Norm	0.70	0.9679	0.9688	0.0440		nal Distributio	n		
C	I T		-Darling A2			2.492	0.0640		istribution			
Contro	irend	Mann-Ker	ndall Trend	est	8		0.5627	Non-Sign	ificant Trend	in Contro	ols	

Report Date:

14 Nov-19 17:10 (p 2 of 2) 192168 / 06-7968-7929

Test Code/ID:

Ceriodaphnia 7-d Survival and Reproduction Test

Nautilus Environmental

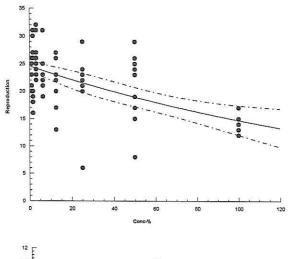
Analysis ID: Analyzed:

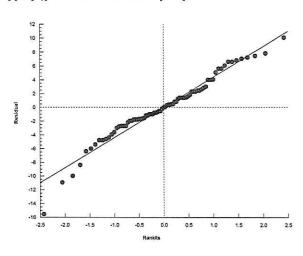
19-0772-9383 14 Nov-19 17:10 Endpoint: Reproduction

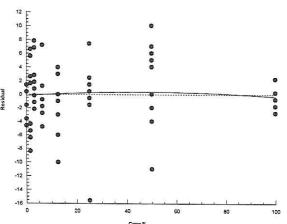
Analysis: Nonlinear Regression (NLR)

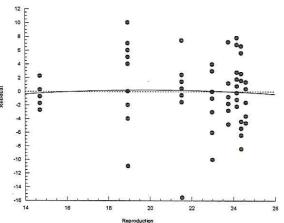
Status Level:

CETIS Version: CETISv1.9.4


Reproduction	Summary				(Calculated Va	ariate		
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	9	24.22	20	26	0.7778	2.333	9.63%	0.0%
1.56		10	24.8	16	31	1.879	5.94	23.95%	-2.39%
3.12		10	25.8	22	32	1.062	3.36	13.02%	-6.51%
6.25		10	22.7	19	31	1.086	3.433	15.13%	6.28%
12.5		10	21.9	13	27	1.402	4.433	20.24%	9.59%
25		10	21.2	6	29	1.867	5.903	27.84%	12.48%
50		10	20.3	8	29	1.984	6.273	30.90%	16.19%
100		10	14.2	12	17	0.6799	2 15	15 14%	41 38%


Reproduction Detail


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	N	25	23	26	26	20	26	25	21	26	
1.56		16	19	31	30	31	18	27	20	26	30
3.12		25	26	22	25	24	23	23	32	31	27
6.25		23	19	21	22	19	25	22	23	22	31
12.5		20	26	13	23	17	22	27	22	22	27
25		29	23	24	20	24	22	21	21	22	6
50		25	29	17	15	8	26	23	19	17	24
100		12	13	15	12	14	13	17	17	12	17


Graphics

Model: 3P Log-Gompertz: $\mu=\alpha\cdot\exp[\log[0.5]\cdot[x/\delta]^{\alpha}]$ Distribution: Normal [$\omega=1$]

APPENDIX B – Oncorhynchus mykiss Toxicity Test Data

Rainbow Trout Early Life Stage Summary Sheet

Client:	Nyroter Myra Falls	Start Date/Tim	e: Octob	w 30, 2019	@ 14556
Work Order No.:	192167	Test Species:	Oncorhyn	chus mykiss	-
Sample Information	on:				
Sample ID: Sample Date: Date Received: Sample Volume:	11A-RUNOTF October 28, 2019 October 29, 2019 Bx 20L				
Dilution Water:					
Type: Hardness (mg/L C Alkalinity (mg/L Ca		ap Water		×	
Test Organism In	formation:				
Batch No.: Source: Loading Density:	Lyndon Troof Fish H 0.80 g/L	atcharles, New D	under, on		
Number of male b Number of female Sperm motility che	broodstock used:	ı motility using a coı	mpound mic	roscope	
SDS Reference T	oxicant Results:			ε	
Reference Toxica Stock Solution ID: Date Initiated: 7-d EC50 (95% C	19802 October 30,2	alg ng/C SDS			
Reference Toxica Reference Toxica	nt Mean and Range: 代語nt CV (%):	3 (23-8.2)	ng/CSDS		
Test Results:	EC25 % (v/v) (95% CL) EC50 % (v/v) (95% CL)	11A-RUNOFF >100 >100	Sample ID		
Reviewed by:		. Date r	eviewed:	NN 22	2019

7-d Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:	NY	rster	AR	wra.	Falls			Date &	-			/19	_	1
Sample ID:	10	711-7	AR	ung			Stop	Date &	CER #:		V. 6	1-13	à 1020	- N
Work Order #:	19	2167		0			:-	Test Sp			ınchus	mykiss		
								rest op	coles.	Oncom	ynonus	myrado		
2/ 1/11							Do							
% (/v)	•			2	. 1	3	Da	ys 4		. 5		6		7
Concentration	0	roll.	No. of the last	Charles and		Commission.	The same of the	a declination						
CONT	init.	new	old	new	old	new	old	new	old	new	old	new (45	old	final
Temperature (°C)	94,0	145	14,5	14,5	14.5	146	145	14/5	146	14.5		(00)	14.5	165
DO (mg/L)	101	10,0	100	1011	98	10,0	9.7 6.8	101	9,9	10.2	9.9		9.9	100
pН	6.9	30	テレ	7,0	615	69		6.8	6,5	67	68	68	61	6.8
Cond. (µS/cm)	29	30)	3.	2	3		2		29		29		29
Initials	2		<u></u>		}		2	A		M	u	YW		uil
6.25							Da	ıys				·		
Concentration	0		1	:	2		3	4	4		5		6	7
	init.	new	old	new	old	new	old	new	old	new	old	new	old	final
Temperature (°C)	145	143	14.5	145	145	145	145	146	14,5	145	145	14.5	14.5	14,5
DO (mg/L)	101	101	10,0	9.8	9.9	19.0	98	16.1	9.6	10.	99	(0.0	28	(0-0)
pH	20	71	72	2,1	7-1	71	7.1	68	6.8	6.7	10.5	68	69	6-9
Cond. (µS/cm)	71	3	-3		7	7	~	7	7	7	4	16		74
Initials	P	/	A-	ß		0	-	6	-	1,,,	w	Mu	^	n
madio				, ,,					<u> </u>	000	<u> </u>			
2	1						D.							
25					_		_	ays	,		-		•	
Concentration	0		1	STATE OF STREET	2	42 18 18 18 18 18 18 18 18 18 18 18 18 18	3	- 1 10 - 7 Feb.	4		5 I	Contractor (6	7
	init.	new	old	new	old	new	old	new	old	new	old	new	old	final
Temperature (°C)	14,5	14.12	142	14.6	145	146	143	145	145	145	145	145	14.5	145
DO (mg/L)	10,1	10.1	10.1	9,9	9.9	9,9	9.8	194	28	10.7/	9.9	99	(20	(5-(
pH	72	72	72	32	7.1	375	7.j	6.8	64	6.9	7.1	7.0	17	7.0
Cond. (µS/cm)	376	+ /	86	18	- 1	ld	=3	1 6	= <u>2</u>		34	15	36	139
Initials	9-		8	7	4	A-	-	B	-	\ \rac{1}{2}	w	U	w	in
					6-19-10									
100							Di	ays						
Concentration	0		1	00	2		3	1	4		5		6	7
	init,	new	old	new	old	new	old	new	old	new	old	new	old	final
Temperature (°C)	14.5	14,2			145	145	145	146				145	14/	iners
DO (mg/L)	10,30		10,0	9.9	10,0	98	9.7	104	95		-	90	(9.0)	100
pH	マラ	374		73	32	22	7.2	69	70	72	12	7.2	73	7.2
Cond. (µS/cm)	563		88	55						30	11.7		10	572
	T		49	00		ح	88		FS			57		100
Initials	12		R-		<u>a-</u>		-	4		/W	\sim	u	in	like
hermometer: Œ��[O	DO met	er/probe	: 2/3	,213	pH met	er/probe	213	, 213	Conduc	tivity me	ter/nroh	oe: <u>~13</u>	, 213	>
				`\ 	p	опріодо		**************************************	_	civity inc		<u></u>	.,	
		ntrol		00,6						Analys	sts:	AW	D. YUL	<u>~</u>
Hardness*	9	8	2	84									,	
Alkalinity*		7		ಬ	_					Review	wed by		U	
* mg/L as CaCO3										Date re	viewed	-	NN	22,20
Sample Description	:	<u>cle</u>	<u>r, ~</u>	c) (c	low,	10	ode	w,	sight	per	Heda	tes		
Comments:								ď		×*				
Version 1.2 Issued July 19	2017													

Nautilus Environmental Company Inc.

Embryo Toxicity Test Daily Mortality

Client: Sample ID: Work Order #:	N 14 19	4/8t A Ri 216	Cev noft 1	Myr	a Fa	נו <u>ו</u>	Sta Sto	p Date	& Time:	October 3 November (Oncorhynchus m	0,2019@	1455h 1020h
Concentration (°(o J(V)	Rep	1	Day of	Test 3	- No.	of Moi	rtalitie 6	7 7	Total Dead Eggs	Total Undeveloped	Total No. Embryo	Total Exposed
Confrol	1	0	J	0	2	(a)	0	0	٥	5	25	30
	2	1	1		1	Ĭ		3	3	5	24	30
	3							Ö	0	ව	30	30
	4							0	0	l	29	30
6.25	1							0	0	1	29	30
	2							1	1	.0	29	30
	3							0	0	0	30	30
	4						*	0	0	4	26	30
12.5	1						4	0	4	3	23	30
	2	11-					0	1	1	1	29	30
	3		7	\vdash	1		1		0	Ö	30	
	4	Н	1	\vdash	11	1	V	0		ی	29	30
25	1		0	H		w/	1	0	1	೨	29	30
	2	1	1	1	-	1	Ó	0	1		28	30
	3		-	H	+	P	\vdash	0	0	3	30	30
50	1	1	-	-	+	₩-	-	0	0	A75 - 27		30
	2	-		H	+	4	\vdash	6	100	0	28	30
	3	\vdash	+	-	+	5	-		w K 1	0	26	29
	4	-			+	1 3	1	0	0	1	30	30
100	1	+	++	+	++	+	1		2	6	29	
100	2			\vdash		3	2	0	6	1 7	23	30
	3			\vdash		0	0	0	Ö	0.		30
	4		1	1	+	10	ŏ	0	Ö	9	30	30
	1					+ →						20

omments:	escane.		
	SH.		1/01 27 0410
eviewed by:	(41)	Date reviewed:	NN-22,2019

a no mo

Tech Initials

Vin

MM

um

Client:_	Nyrolar	
W.O.#:	192167	

Hardness and Alkalinity Datasheet

			Alkal	inity			П		0		
Sample ID	Subsample Date	Date Measured	Sample Volume (mL)	(mL) 0.02N HCL/H₂SO ₄ used to pH 4.5	(mL) of 0.02N HCL/H₂SO ₄ used to pH 4.2	Total Alkalinity (mg/LCaCO₃)		Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Technician
11A-RUNUFF	oct:3013	Oct.3015	50	(~(1,2	20		50	14.2	284	SPT
pechlor	oct.3065	oct. 3des	(00)	0.8	0.9	7		(00	0.3	3	m
	-										
					×						
								2			
Notes:											
Reviewed by:			M			Date Reviewe	d:		NN.Z	2,2019	

Report Date: Test Code/ID: 21 Nov-19 13:31 (p 1 of 2) 192167 / 16-0588-0185

									rest	Code/ID:		19	1210//1	0-0588-018
Salmor	nid Em	bryo Survival an	d Develo	pment 1	est						,	Naut	ilus Env	ironmental
Analysi	is ID:	03-2852-7595	En	dpoint:	Proportion Norr	mal			CET	IS Version	n: CETI	Sv1.9.	.4	
Analyze	ed:	21 Nov-19 13:30	An	alysis:	Linear Interpola	ation (ICPIN))		Stat	us Level:	1			
Batch I	D:	04-8865-5029	Те	st Type:	Development				Ana	lyst: Y	vonne Lan	n		
Start D	and an action	30 Oct-19 14:55	-	otocol:	EC/EPS 1/RM/				Dilu	ent: De	echlorinate	ed Tap	Water	
- J		06 Nov-19 10:20	Sp	ecies:	Oncorhynchus	mykiss			Brin	e:				
Test Le	ength:	6d 19h	Та	xon:	Actinopterygii				Sou	rce: Ly	ndon Fish	n Hatch	neries	Age:
Sample		13-3821-2767		de:	4FC3819F				Proj	ect:				
5041101000000 BILVING		28 Oct-19 08:45		aterial:	Water Sample				Sou	-	yrstar Myr		į.	
		29 Oct-19 08:57		AS (PC):					Stat	ion: 11	IA-Runoff			
Sample	e Age:	54h (10.7 °C)	CI	ient:	Nyrstar Myra F	alls								
Linear	Interpo	olation Options												
X Trans	Special Period	Y Transform	Se	ed	Resamples	Exp 95%		Metho						
Log(X+	1)	Linear	20	54894	200	Yes		Two-P	oint Interp	olation				
Point E	stimat	es									6			
Level	%	95% LCL	95% UC	L TU	95% LCL	95% UCL								
EC5	75.33	2000	n/a	1.32	7 n/a	n/a								
EC10	>100	10,7	n/a	<1	n/a	n/a								
EC15	>100	10	n/a	<1	n/a	n/a								
EC20 EC25	>100		n/a	<1	n/ <mark>a</mark>	n/a								
EC25	>100 >100		n/a n/a	<1 <1	n/a n/a	n/a n/a								
EC50	>100		n/a	<1	n/a	n/a n/a								
No fine-trevalo	tion No	ormal Summary					lated \	√ariate	(A/R)	-			leator	nic Variate
Conc-%		Code	Count	Mea	n Min	Max	Std I	- 175-0	CV%	%Effect	t A/B		Mean	%Effect
0		N	4	0.90		1.0000	0.098	C1-0-181	10.90%	0.0%	108/1		0.9301	0.0%
6.25			4	0.95		1.0000	0.057		6.08%	-5.56%	114/1		0.9301	0.0%
12.5			4	0.91	72 0.7667	1.0000	0.103	38	11.31%	-1.91%	111/1		0.9301	0.0%
25			4	0.95	0.9000	1.0000	0.043	30	4.53%	-5.56%	114/1		0.9301	0.0%
50			4	0.93	30 0.8000	1.0000	0.090	01	9.66%	-3.67%	111/1	19	0.9301	0.0%
100			4	0.85	0.7000	1.0000	0.140)5	16.52%	5.5%	103/1	21	0.8505	8.55%
Propor	tion No	ormal Detail												
Conc-%	6	Code	Rep 1	Rep	2 Rep 3	Rep 4								
0		N	0.8333	0.80	00 1.0000	0.9667			,					
6.25			0.9667	0.96	67 1.0000	0.8667								
12.5			0.7667	0.93	55 1.0000	0.9667								
25			0.9667	0.93		0.9000								
50			0.9667	0.96		0.8000								
100			0.9355	0.76	67 1.0000	0.7000								
Propor	tion No	ormal Binomials	20							7011				
Conc-9	6	Code	Rep 1	Rep		Rep 4								
0		N	25/30	24/3		29/30					_			
6.25			29/30	29/3		26/30								
12.5			23/30	29/3		29/30								
25			29/30	28/3		27/30								
50			29/30	28/2		24/30								
100			29/31	23/3	0 30/30	21/30								

Report Date: Test Code/ID: 21 Nov-19 13:31 (p 2 of 2)

192167 / 16-0588-0185

Salmonid Embryo Survival and Development Test

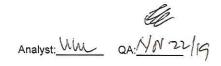
Nautilus Environmental

Analyzed:

Analysis ID: 03-2852-7595 21 Nov-19 13:30 Endpoint: Proportion Normal Analysis:

Linear Interpolation (ICPIN)

CETIS Version:


CETISv1.9.4

Status Level:

1

Graphics

APPENDIX C – *Lemna minor* Toxicity Test Data

Lemna minor Summary Sheet

Client:

Nyrstar Myra Falls

Start Date: 15 - Nov - 19

Work Order No.:

JA- 192170 JW Set up by: MU

Sample Information:

Sample ID:

11A - RUNOFF

Sample Date:

13 - NOU - 19

Date Received:

15 - NOV - 19

Sample Volume:

2 x 20L

Test Organism Information:

Culture Date:

DIFOIL

Age of culture (Day 0):

8 days

>8X growth in APHA?:

Y (59 Fronds)

KCI Reference Toxicant Results:

Reference Toxicant ID:

LM 181

Date Initiated:

20 - NOV - 19

7-d No. of Fronds IC50 (95% CL):

3.6 (3.3 - 4.0) 9/L KC

7-d No. Fronds IC50 Reference Toxicant Mean (2 SD Range): 3 -5 (3.0 - 4.1) CV (%): 8

Test Results:

	Number of Fronds	Dry Weight				
IC25 %(v/v) (95% CL)	31.0 (11.4 - 62.8)	30.8 (5.0 - 52.7)				
IC50 %(v/v) (95% CL)	73.3 (29.6 - 96.3)	797				

Reviewed by:

, tou

Date reviewed:

Dec. 6/19

Plant Growth Inhibition Toxicity Test Water Quality Measurements

Client :	Nyrstar	Myra Falls	\$		Setup by:	MLI					
Sample ID:	II A - RU	UOEE			Test Date: Nov 15 , 2019						
Work Order No.:	192170				CER#:		6				
Culture Source:	CPCC #4	90		Test Species: Lemna minor							
Test Culture Age:	<u>8</u> 00	iys		> 8X Gro	wth? (Y/N):	Y (59	fronds)				
Light Intensity Range:	1670-	53to 11	u×	Date	Measured:	NOV 14 , 2019					
		F = 100									
Day	0	1	2	3	4	5	6	7			
Shelf Temp (°C)	25.0	25.0	16,0	25/2	29 10	29.~	25~	25,0			
Initials	MU	4	A_	MUT	MIC	พเก	MLT	NLJ			
Sample Characteristics: Temperature (°C) DO (mg/L) pH Conductivity (µS)	8.2 7.8 494	- -	Aeration?: Nutrients added? ¹ :	90 _{min}		3	ter Quality				
			-	nds							
				1 10 mL of ea	ch APHA stoo	ck (A,B and C) added to 970 r	nL sample.			
Concentration	n	Tempera	ture (°C)	pl	H	Conductivity (µS)					
% (1/1)		Day 0	Day 7	Day 0	Day 7						
Control	24.0	25.0	8.2	9.0		914					
1.5		24,0	25.0	8.2	8.7		923				
3		24.5	25.0	8.2	8.7		929				
6.1		24.0	25.0	8.2	8.8						
12.1		24.0	25.0	8.2	°\$ 9.0		943 966				
24.2		24.5	25.0	8.2	8.6		1012				
48.5		24.0	25.0	8.2	8.6		1106				
97		24.0	25.0	8.2	8.7	1273					
Initials		NO	A	MU	0		MY				
Thermometer: 4 Light meter: pH meter/probe: 1 1 Conductivity meter/probe: 1 1											
		il ezerrolog									
Comments:											
© 3635.750 ¹⁷⁵ C.				19041							
		761	-				~				
Reviewed:		Joh			Date Review	wed:	Dec.	6/19			

Lemna minor Toxicity Test Data Sheet - 7-d Frond Counts

Sample ID:	IIA -			શાહ		•				Termina	tion Date:	NOV , 14 , 2019		_
Work Order #:	1921	70				ři				Test:	set up by:	MLT		
Concentration	Rep		fronds Day 7	Chlorosis	Necrosis	Yellow	Abnormal size	Gibbosity	Single fronds	Root destruction	Loss of buoyancy	Comments	Init	ial
% (N/N)														_
	Α	6	81										Wr	7
a. otrol	В	6	114										-	_
control	С	6	123										\dashv	_
	D	6	121										\dashv	_
	A	6	102										\dashv	_
	В	6	99										+	_
1.5	С	ک	103										\dashv	_
	D		112										\rightarrow	_
	<u>A</u>	6	99										++	_
_	В	6	116									7	++	_
3	С	6	69						-				$\dashv \dashv$	_
	D	1.7510	124										+	_
	A	۵	104											_
	В	6	124										+	-
6.1	С	6	95										$\dashv \dashv$	_
	D	ک	108										+	_
	A	6	107					_					+	_
*	B C												+	_
15 · [D	6	105										\dashv	_
	11111111	6 6	13/1						-				\dashv	_
	A	6	90										+	_
24.2	B	6	82			14			4		-	*	\rightarrow	_
24.2	D	6	105										\rightarrow	/
	U	0	100										,	
Comments:														_

Reviewed by: _

Lemna minor Toxicity Test Data Sheet - 7-d Frond Counts

Sample ID:	N A	- Runof	nyra 1 FF	Falls		5 3				Terminat		NOV 15 , 2		
Work Order #:	1921	OF								1621	set up by.	MLI		
Concentration	Rep		fronds	Chlorosis	Necrosis	Yellow	Abnormal size	Gibbosity	Single fronds	Root destruction	Loss of	Co	mments	Initials
P/6 (V/V)		(80.1)	Day 7				5,25		314.m.k.t.m.m.v.		North Bourson			
	Α	6	53			×								MICT
	В	6	89			×								
48.5	С	6	68			×		(9)						
	D	6	.48			×								
	Α	6	53		X	X								
,	В	6	52		X	X								
97	С	6	45		X	×								-+
	D	6	43		X	X								- 4
	Α													
	В													
	С													
	D													
	Α													
	В													
	С													
	D													
	Α													
	В													
	С													
	D													
	Α													
	. B			14							8	×.		
	С													
	D													
Comments:														
Reviewed by:		Jou								Date F	Reviewed:		Dec. 6/	(9

7-d Lemna minor Weight Data Sheet

Client:	MUYG FAILS	Start Date: NO	15/19
Sample ID:	11A-runcif	Termination Date: NO	1 22 /19
WO #:	192170	Balance ID:	Bal - i

21 1.	V/V)
2/1/	V / V

Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials
(MF Green)	A	1	1048.36	1055.05	57/aL
	В	2	1017.75	1027,45	110
control	С	3	1062.22	1072.28	10
	D	4	1042.51	1072.76	1/0
	Α	5	00. רר 10	1085.76	1/24
1. 5	В	6	1051.48	1059.27	10
	С	ר	1087.08	1095.54	18
	D	8	1069.27	1078.98	1/0
	Α	9	1074.33	1081.87	10
3	В	10	1044.70	1054.33	10
	С	11	1064.88	1069.82	104
	D	12	1076.10	1087.32	10
	Α	13	1051.04	1059.26	10
6.1	В	14	1059.42	1069.99	110
6.1	С	15	1065.77	1072.90	1/0
	D	16	1045.28	1054,70	10
	Α	้า	1030.62	1038.85	10+
12.1	В	18	1057. \$ 49	10645.04	10
1.51 %	С	19	1046.09	1053.88	12
	D	2 Ü	1066.88	1075.89	10
	Α	21	1027.64	1034.33	110
24.2	В	22	1032.12	1039.79	10
	С	23	1029.78	1036.39	10
	D	24	1040.85	1049.32	1/2
	Α	25	1065.19	1070.56	10
48.5	В	26	1054.12	1060.77	10
	С	27	1067.89	1073.45	10
	D	28	1036.55	1042.832	VI

Comments:	10% re-weigh	15: Opan * 3	Weight: 1072.15	ma
	,	@ pan* 18	Weight: 1064.92	nra
		3 pan \$ 23	weight: 1036.41	ma
Reviewed by:			Date Reviewed:	<u> </u>
		@ pan* 30	werg ht: 1055.52	mg
	204		Das	110

Dec - 6/19 Nautilus Environmental Company Inc.

7-d Lemna minor Weight Data Sheet

Client:	Myra	Falls		Start Date: Nov 15 / 19				
Sample ID:	11A - VV	n () f	Te	rmination Date: Nou ລລ / ເ				
WO #:	0FIGP1			Balance ID: Bal -	1			
11(V/V)								
Concentration	Rep	Pan No.	Pan weight (mg)	Pan + plant (mg)	Initials			
(ME CLEEN)	Α	29	1010.45	1075.51	57 /0			
97	В	30	1050.05	1055.585	10			
"36- I	С	31	1083.37	1088.83	10			
	D	32	1052.68	1057.70	418			
	Α							
	В							
	С							
	D							
6	Α							
	В							
	С							
	D							
	Α							
	В	-						
	С							
	D							
	Α				1 (0.000			
	В							
	С			3				
	D							
	Α							
	В							
	С							
	D		,					
	Α							
	В							
	С							
	D							
Comments:								
Reviewed by:		Jou		Date Reviewed:	6/19			
				The state of the s				

Report Date: Test Code/ID: 05 Dec-19 14:29 (p 1 of 2)

192170 / 00-4992-9564

								16	st Coue/ii	٥.		13217071	JU-4002-000-
Lemna	Growt	h Inhibition Test	Č								N	autilus En	vironmental
Analysi	s ID:	11-3369-0443	End	point:	Frond Count			CE	TIS Vers	ion:	CETISV	1.9.4	
Analyze	ed:	05 Dec-19 14:27	Anal	ysis:	Linear Interpola	tion (ICPIN)		Sta	atus Leve	l:	1		
Batch I	D:	09-4759-2212	Test	Type:	Lemna Growth			An	alyst:	Jesli	n Wijaya		
Start D	ate:	15 Nov-19	Prot	ocol:	EC/EPS 1/RM/3	37		Dil	uent:	Modi	fied APHA	A	
Ending	Date:	22 Nov-19	Spec	cies:	Lemna minor			Br	ine:	950			ī.
Test Le	ngth:	7d 0h	Taxo	on:	Tracheophyta			So	urce:	CPC	C#490		Age: 8d
Sample	e ID:	10-5577-6941	Cod	e:	3EEDE0AD			Pr	oject:				
Sample	Date:	13 Nov-19 09:55	Mate	erial:	Effluent			So	urce:	Nyrs	tar Myra F	alls	
Receip	t Date:	15 Nov-19 09:14	CAS	(PC):				St	ation:	11A-	Runoff		
Sample	Age:	38h (13.3 °C)	Clie	nt:	Nyrstar Myra Fa	alls							
Linear	Interpo	olation Options								1			
X Trans	sform	Y Transform	Seed	d	Resamples	Exp 95% C	CL Met	hod					
Log(X+	1)	Linear	9269	924	200	Yes	Two	-Point Inte	rpolation	*********		***************************************	
Point E	stimat	es											
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL							
IC5	12.57	n/a	22.72	7.956	4.4	n/a							
IC10	15.98	3 n/a	31.99	6.257	3.126	n/a				8			
IC15	20.25	5 n/a	37.5	4.937	2.667	n/a							
IC20	25.39	8.544	45.23	3.938	2.211	11.7							
IC25	30.98	3 11.4	62.77	3.228	1.593	8.774							
IC40	54.14	23.48	77.88	1.847	1.284	4.259							
IC50	73.3	29.65	96.3	1.364	1.038	3.373							
Frond	Count	Summary				Calc	ulated Va	ariate				Isoto	nic Variate
Conc-9	%	Code	Count	Mean	n Min	Max	Std Dev	CV%	%Eff	ect		Mean	%Effect
0		N	4	103.8		117	19.55	18.84%	0.0%			103.8	0.0%
1.5			4	98	93	106	5.598	5.71%	5.54%	6		99.38	4.22%
3			4	96	63	118	24.34	25.36%	7.47%	6		99.38	4.22%
6.1			4	101.8	89	118	12.12	11.91%	1.939	6		99.38	4.22%
12.1			4	101.8	99	107	3.594	3.53%	1.939	%		99.38	4.22%
24.2			4	84.25	76	99	10.4	12.35%	18.89	6		84.25	18.8%
48.5			4	66	47	83	15.3	23.18%	36.39	9%		66	36.39%
97			4	42.25	37	47	4.992	11.81%	59.28	3%		42.25	59.28%
Frond	Count	Detail											
Conc-9	%	Code	Rep 1	Rep :		Rep 4							
0		N	75	108	117	115							
1.5			96	93	97	106							
3			93	110	63	118							
6.1			98	118	89	102				196			
12.1			101	100	99	107							
24.2			78	84	76	99							
				19 5	8.0	10/80/70							

Analyst: NN QA: Dee-6/19

48.5

97

47

47

83

46

72

37

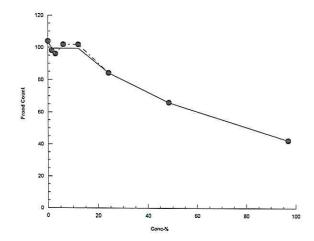
62

39

Report Date:

05 Dec-19 14:29 (p 2 of 2) 192170 / 00-4992-9564

Test Code/ID: 192170 / 0


Lemna Growth Inhibition Test

Nautilus Environmental

Analysis ID: 11-3369-0443 Endpoint: Frond Count CETIS Version: CETISv1.9.4

Analyzed: 05 Dec-19 14:27 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Graphics

Analyst: N QA: Dec. 6/19

Lemna Growth Inhibition Test Analysis ID: 12-6194-1419

Report Date:

05 Dec-19 14:37 (p 1 of 2)

Test Code/ID:	192170 / 00-4992-9564
	Nautilus Environmental
CETIS Version:	CETISv1.9.4

Analyzed:	05 Dec-19 14:32	Analysis: Linear Interpolation (ICPIN)	Status Level: 1
Batch ID:	09-4759-2212	Test Type: Lemna Growth	Analyst: Jeslin Wijava

Start Date: 15 Nov-19 Protocol: EC/EPS 1/RM/37 Diluent: Modified APHA Ending Date: 22 Nov-19 Species: Lemna minor Brine:

Test Length: 7d 0h Taxon: Tracheophyta Source: CPCC#490 Age: 8d

Sample ID: 10-5577-6941 Code: 3EEDE0AD Project:

Endpoint: Total Dry Weight-mg

Sample Date: 13 Nov-19 09:55 Material: Effluent Source: Nyrstar Myra Falls Receipt Date: 15 Nov-19 09:14 CAS (PC): Station: 11A-Runoff

Sample Age: 38h (13.3 °C) Client: Nyrstar Myra Falls

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Log(X+1)	Linear	1404012	200	Yes	Two-Point Interpolation

Point Estimates

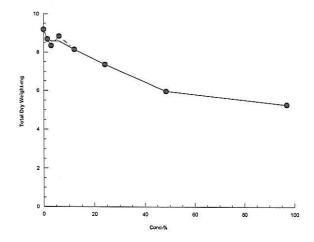
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
IC5	1.338	n/a	26.96	74.75	3.71	n/a
IC10	10.17	n/a	34.36	9.836	2.91	n/a
IC15	16.46	n/a	38.7	6.075	2.584	n/a
IC20	24.44	n/a	43.08	4.091	2.321	n/a
C25	30.76	5.002	52.68	3.251	1.898	19.99
IC40	76.23	16.56	n/a	1.312	n/a	6.037
IC50	>97	n/a	n/a	<1.031	n/a	n/a

Total Dry Weight-mg Summary					Isotonic Variate					
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	Mean	%Effect
0	N	4	9.175	6.69	10.25	1.672	18.23%	0.0%	9.175	0.0%
1.5		4	8.68	7.79	9.71	0.7974	9.19%	5.4%	8.68	5.4%
3		4	8.332	4.94	11.22	2.718	32.62%	9.18%	8.584	6.45%
6.1		4	8.835	7.13	10.57	1.487	16.84%	3.71%	8.584	6.45%
12.1		4	8.143	7.55	9.01	0.6413	7.88%	11.25%	8.143	11.25%
24.2		4	7.36	6.61	8.47	0.8831	12.00%	19.78%	7.36	19.78%
48.5		4	5.962	5.37	6.65	0.6	10.06%	35.01%	5.962	35.01%
97		4	5.26	5.02	5.5	0.2551	4.85%	42.67%	5.26	42.67%

Total Dry Weight-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	6.69	9.7	10.06	10.25	
1.5		8.76	7.79	8.46	9.71	*
3		7.54	9.63	4.94	11.22	
6.1		8.22	10.57	7.13	9.42	
12.1		8.22	7.55	7.79	9.01	
24.2		6.69	7.67	6.61	8.47	
48.5		5.37	6.65	5.56	6.27	
97		5.06	5.5	5.46	5.02	8

Report Date: Test Code/ID: 05 Dec-19 14:37 (p 2 of 2) 192170 / 00-4992-9564


Lemna Growth Inhibition Test

Nautilus Environmental

Analysis ID: 12-6194-1419 Endpoint: Total Dry Weight-mg CETIS Version: CETISv1.9.4

Analyzed: 05 Dec-19 14:32 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Graphics

APPENDIX D – Pseudokirchneriella subcapitata Toxicity Test Data

Pseudokirchneriella subcapitata Summary Sheet

Client:	Nyrstar Myra Falls	Start Date:	NOV 15/18
Work Order No.:	192169	Set up by: _	
		6 3	
Sample Information:			
	110 0 AD		
Sample ID:	11A-Runoff		**
Sample Date:	N=V 13/19		
Date Received: _	Nov 15/19 23×20L		
Sample Volume: _	710		

Test Organism Inform	nation:		¥
and the state of t			
Culture Date:	Nov8/1	9	
Age of culture (Day 0)	: <u>7</u> a		
	y.		
Zinc Reference Toxi	cant Results:		*.
Reference Toxicant II	D: SC191		
Stock Solution ID:	19202		
Date Initiated:	Nov 22/19		
Date miliated.	NSV 22711		
72-h IC50 (95% CL):	26.6 (23.5 - 30.0)	Mall m	
12 11 1000 (0070 02).		70 J - G.	• ≅• ,
	·	N	
72-h IC50 Reference	Toxicant Mean and Range: 31.6 (25.8	(ج، 38 - ا	CV (%): 10
		ug/L on	
	4		5
Test Results:			Algal Growth
	IC25 %(v/v) (95% CL)		795.Z
	IC50 %(v/v) (95% CL)		795.2
	Mal		Dag 12
Reviewed by:		Date rev	riewed:

72-h Algal Growth Inhibition Toxicity Test Water Quality Measurements

Client: N	yestar	Myra:	Falls is	td.							- .:
Sample ID:		UA-F	lunoff			Test Date	/Time:		Nov 1	5/19 C 13	300h.
Work Order No.:		19:	1169			CER#:				+	- c
						Test Spec	ies:	Pseudokirch	neriella su	bcapitata	
Culture Date:	Nov	8/19		Age of Cu	lture:	70	_Culture Hea	ılth:	Go	ad.	_
Culture Count:	1 390	2 410		Average:	400	Culture C	ell Density (d	:1):	400 X 17	st celler	<u>/n</u> L
	v1 =	220,000 ce	lls/ml x 1	∞ ml	/-		- = 5	5°mL	to.		
		(c1)	77	20 XD4	celutri	cells/ml ผม		22.6			
Time Zero Counts:							The same of the sa			20 (0)	- 111/2
No. of Cells/mL:		×3.75	4104		Initial Den	sity:	# cells/mL -	+ 220 μL x 1	L =	10682 A	elu/mL
Concentration	Water	Quality	Į,	ncubator T	emperatur	e	Micr	oplates rota	ated 2X pe	r day?	
%(v/v)		Temp (°C)	72.72		C)		-	S Langua I		T	-
Control	0 h	0 h	0 h	24 h	48 h	72 h	0 h	24 h	48 h	72 h	-
	7.0	24,5	25.0	25.0	26.0	7510	~	/			4
1.5	0.F	24,0	_					_/			4
3	7.0	242								/	
Ь	7.2	24,0					<u>_</u>	_/			
11.9	G.F	24,0					~		/		
23.8	7.3	240					1		/		
47.6	7.4	24,0					~		/	/	1
45.2	7.5	34,0	V	1	+		1		- /	/	1
									-		1
											1
Initials	MI	nla	MO	A	~	MD	NO	A-	~	NO]
Initial control pH:	Well 1:		9.F	- 4460	-	Well 2	<u>. 7</u>	.D	_		
Final control pH:	Well 1:		7.1		-	Well 2	<u>. 7</u> .	1	=		
Light intensity (lux	<u>():</u>	4100	>.		-	Date mea	sured:	k	Jov 15/	17	01
Thermometer:	4_	Light me	ter: _ }	pl	H meter/pr	obe:	1_1_				
Sample Description	on:	clear	, cola	west	, oda	wese	fine	gray 1	partici	Nates.	_
Comments:							.!				 6
Pavious		×				Alexander de la companya del companya de la companya del companya de la companya	g tue =	ī	r.	17,20	19
Reviewed:			UV		-	Da	te reviewed:	k	, –	1120	

Pseudokirchneriella subcapitata Toxicity Test Data Sheet 72-h Algal Cell Counts

Client: Ny	istav	Mura Fo	ans Eld	Start D	ate/Time:	M	N 15/18 C	13004		
Work Order #:		1921	69	Terminat	tion Date:	N=V18/190 1300h				
Sample ID:		11A-R	unoff	Test :	set up by:		MD			
%(v/v)										
Concentration	Rep	Count 1	Count 2	Count 3	Count 4		Comment	S	Initi	
Control	Α	44					<i>y</i>		M	7
	В	38 35							1	
	С	35								
	D	39 37								
	E						250000000			
	F	39								
	G	34								
	H	40								
	<u>A</u>	50						1,500		
1.5	В	45								
	С	51								
N	D	56								
	A	59								
3	В	58								
9	С	h0				•				
	D	52								
	Α	69								
4										
6 B 66 C 68										
		72								
	A									
11.9	В	69					=77			
3.47	С	79								
	D	80,					3.7411 C			
	A	103								
23.8	В	99								
\$ 2.0	С	105								
	D	105		21						
	Α	109						***************************************		
47.4	В	11)								
., -	C	92								
	D	38								
95.2	A B	37							-	
15.0	C	28							\vdash	
	D	38 32								
		•		L	L			÷		-
Comments:										
Reviewed by:		W		Date 5	Reviewed:		Dee-i	7, 2019		
			-	. Date I	CVIEWEU		075 SEE 1861	1 - 011		

Pseudokirchneriella subcapitata Algal Counts

Client: Nyrstar Myra Falls Start Date/Time: 15-Nov-19 @ 1300h WO#: 192169 Termination Date/Time 18-Nov-19 @ 1300h Sample ID: 11A-Runoff Initial Cell Density: 10682 cell/mL 235000 0.22 0.01 Concentration Rep Count 1 Count 2 Count 3 Count 4 Mean Cell Yield 10681.82 $(x 10^4)$ $(x 10^4)$ %(v/v) $(x 10^4)$ $(x 10^4)$ $(x 10^4)$ $(x 10^4)$ cell/mL Control 44 Α 44 42.9 37.2 mean В 38 38 36.9 SD 3.105295 C 35 35 33.9 CV 8.351649 D 39 39 37.9 Ε 37 37 35.9 F 39 39 37.9 G 34 34 32.9 H 40 40 38.9 1.5 Α 50 50 48.9 В 45 45 43.9 C 51 51 49.9 D 56 56 54.9 3 Α 59 59 57.9 В 58 58 56.9 C 50 50 48.9 D 52 52 50.9 6 Α 69 69 67.9 В 66 66 64.9 С 68 68 66.9 D 72 72 70.9 11.9 Α 74 74 72.9 В 69 69 67.9 C 79 79 77.9 D 80 80 78.9 23.8 Α 103 103 101.9 В 99 99 97.9 C 102 100.9 102 D 105 105 103.9 47.6 Α 109 109 107.9 В 111 111 109.9 C 92 92 90.9 D 96 96 94.9 95.2 A 38 38 36.9 В 37 37 35.9 C 38 36.9 38 D 32

Reviewed by:	W	Date reviewed:	Dec. 17,2019	
	-0	Date reviewed.		


32

30.9

Report Date: Test Code/ID: 12 Dec-19 19:12 (p 1 of 2)

192169 / 10-2529-2130

									16	st Code/II	J.		19210971	0-2529-213
EC Alga	Growth	n Inhibition Tes	st			2						N	autilus Env	rironmental
Analysi	s ID: 0	9-1494-1302	End	oint:	Cell Yield				C	ETIS Versi	on:	CETISV	1.9.4	
Analyze	ed: 1	2 Dec-19 19:12	Anal	ysis:	Linear Interpola	tion (ICPIN))		St	atus Leve	l:	1		
Batch II	D: 1	3-6698-9720	Test	Type:	Cell Growth				Ar	nalyst:	Mimi	Tran		
Start Da	ate: 1	5 Nov-19 13:00	Prot	ocol:	EC/EPS 1/RM/2	25			Di	luent:	Deio	nized Wat	er + nutrien	ts
		8 Nov-19 13:00	Spec	cies:	Pseudokirchner	iella subcap	oitata		В	rine:				
Test Le	ngth: 7	'2h	Taxo	n:	Chlorophyta				So	ource:	In-Ho	ouse Cultu	ire	Age: 7d
Sample		0-5577-6941	Code	e:	3EEDE0AD				Pr	oject:				
		3 Nov-19 09:55			Effluent				S		3355	tar Myra F	alls	
		5 Nov-19 09:14		(PC):					St	ation:	11A-	Runoff		
Sample	Age: 5	51h (13.3 °C)	Clie	nt:	Nyrstar Myra Fa	alls								
Linear	nterpol	ation Options												
X Trans	Chec To Anna Carter Calle	Y Transform			Resamples	Exp 95%	CL	Meth						
Log(X+	1)	Linear	2799	31	200	Yes		Two-l	Point Inte	erpolation				
Residu	al Analy	sis												
Attribut	e	Method			Test Stat	Critical	P-V	alue	Decision	on(α:5%)				
Extreme		Grubbs Ex	treme Value	Test	2.43	2.991	0.41	132	No Out	liers Detec	ted			
Control	Trend	Mann-Ken	dall Trend T	est	2.43		0.71	195	Non-Si	gnificant T	rend	in Control	s	
Point E	stimate	s												
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL								
IC5	51.1	50.63	51.46	1.957	1.943	1.975								
IC10	54.85	53.84	55.63	1.823		1.857								
IC15	58.87	57.25	60.13	1.699		1.747								
IC20 IC25	63.18 67.79	60.88 64.72	64.98	1.583		1.643								
IC40	83.74	77.74	70.22 88.55	1.475 1.194		1.545 1.286								
IC50	>95.2	n/a	n/a	<1.05		n/a					40			196
Cell Yie	eld Sum	mary			200720	X35545	lculat	ed Va	riato				Isoto	nic Variate
Conc-%		Code	Count	Mean	Min	Max		Dev	CV%	%Effe	oct		Mean	%Effect
0		N	8	37.25	// // // // // // // // // // // // //	43	3.10	-C104-F100	8.34%	0.0%	,01		69.29	0.0%
1.5			4	49.5	44	55	4.50		9.11%	-32.89	9%		69.29	0.0%
3			4	53.75	49	58	4.42		8.23%	-44.3			69.29	0.0%
6			4	67.75	65	71	2.5		3.69%	-81.8	3%		69.29	0.0%
11.9			4	74.5	68	79	5.06	56	6.80%	-100.)%		69.29	0.0%
23.8			4	101.2	98	104	2.5		2.47%	-171.	3%		69.29	0.0%
47.6			4	101	91	110	9.4		9.32%	-171.			69.29	0.0%
95.2			4	35.25	31	37	2.87	72	8.15%	5.37%	6		35.25	49.12%
Cell Yie	eld Deta	il												
Conc-%	6	Code	Rep 1	Rep 2		Rep 4	Rep	5	Rep 6	Rep	'	Rep 8		
0		N	43	37	34	38	36		38	33	*	39		
1.5			49	44	50	55								
3			58	57	49	51								
6			68	65	67	71								
11.9			73	68	78	79								
23.8 47.6			102	98	101	104								
47.0			108	110	91	95								

95.2

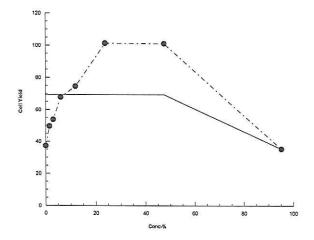
37

36

37

31

EC Alga Growth Inhibition Test


Report Date: Test Code/ID: 12 Dec-19 19:12 (p 2 of 2) 192169 / 10-2529-2130

Nautilus Environmental

Analysis ID: 09-1494-1302 Endpoint: Cell Yield CETIS Version: CETISv1.9.4

Analyzed: 12 Dec-19 19:12 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Graphics

Report Date: Test Code/ID: 12 Dec-19 19:18 (p 1 of 2) 192169 (adj) / 06-6768-0279

EC Alga Growth Inhibition Test	Nautilus Environmental

Analysis ID: 08-1453-6244 Endpoint: Cell Yield CETIS Version: CETISv1.9.4

Analyzed: 12 Dec-19 19:15 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Batch ID: 07-5930-5270 Test Type: Cell Growth Analyst: Mimi Tran

Start Date: 15 Nov-19 13:00 Protocol: EC/EPS 1/RM/25 Diluent: Deionized Water + nutrients

Ending Date: 18 Nov-19 13:00 Species: Pseudokirchneriella subcapitata Brine:

Test Length: 72h Taxon: Chlorophyta Source: In-House Culture Age: 7d

Sample ID: 10-5577-6941 Code: 3EEDE0AD Project:

Sample Date: 13 Nov-19 09:55 Material: Effluent Source: Nyrstar Myra Falls

Receipt Date: 15 Nov-19 09:14 CAS (PC): Station: 11A-Runoff Sample Age: 51h (13.3 °C) Client: Nyrstar Myra Falls

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Log(X+1)	Linear	2104718	200	Yes	Two-Point Interpolation	

Residual Analysis

Attribute	Method	Test Stat	Critical	P-Value	Decision(a:5%)
Extreme Value	Grubbs Extreme Value Test	3.542	2.991	0.0031	Outlier Detected
Control Trend	Mann-Kendall Trend Test	3.542		0.7195	Non-Significant Trend in Controls

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL	
IC5	90.17	n/a	n/a	1.109	n/a	n/a	
IC10	>95.2	n/a	n/a	<1.05	n/a	n/a	
IC15	>95.2	n/a	n/a	<1.05	n/a	n/a	
IC20	>95.2	n/a	n/a	<1.05	n/a	n/a	
IC25	>95.2	n/a	n/a	<1.05	n/a	n/a	
IC40	>95.2	n/a	n/a	<1.05	n/a	n/a	
IC50	>95.2	n/a	n/a	<1.05	n/a	n/a	

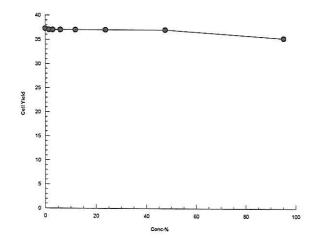
Cell Yield Summary					Isotonic Variate					
Conc-%	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	Mean	%Effect
0	N	8	37.25	33	43	3.105	8.34%	0.0%	37.25	0.0%
1.5		4	37	37	37	0	0.00%	0.67%	37	0.67%
3		4	37	37	37	0	0.00%	0.67%	37	0.67%
6		4	37	37	37	0	0.00%	0.67%	37	0.67%
11.9		4	37	37	37	0	0.00%	0.67%	37	0.67%
23.8		4	37	37	37	0	0.00%	0.67%	37	0.67%
47.6		4	37	37	37	0	0.00%	0.67%	37	0.67%
95.2		4	35.25	31	37	2.872	8.15%	5.37%	35.25	5.37%

Cell Yield Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8
0	N	43	37	34	38	36	38	33	39
1.5		37	37	37	37				
3		37	37	37	37				
6		37	37	37	37				
11.9		37	37	37	37				
23.8		37	37	37	37				
47.6		37	37	37	37				
95.2		37	36	37	31				

Analyst: MC QA: Dec. 17/19

Report Date: Test Code/ID: 12 Dec-19 19:18 (p 2 of 2) 192169 (adj) / 06-6768-0279


EC Alga Growth Inhibition Test

Nautilus Environmental

Analysis ID: 08-1453-6244 Endpoint: Cell Yield CETIS Version: CETISv1.9.4

Analyzed: 12 Dec-19 19:15 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Graphics

APPENDIX E - Chain-of-Custody Forms

Nautilus Environmental Chain of Custody (electronic) British Columbia: 8664 Commerce Court, Burnaby, BC V5A 4N3 Tel: 604-420-8773 Washington: 5009 Pacific Highway East, Suite 2, Tacoma, WA 98424 Tel: 253-922-4296 October 28th 2019 pg 1/1 California: 5550 Morehouse Drive, Suite 150, San Diego, CA 92121 Tel: 858-587-7333 Sample Collection By: ANALYSES REQUIRED Report to: Invoice to: Receipt Temperature (°C) 72-hr Selenastrum (or Pseudokirchneriella subcapitata) Company Nyrstar Myra Falls Ltd same Address PO BOX 8000 City/State/Zip Campbell River, BC Contact Craig Schweitzer Accounts Payable Daphnia Magna LC 250-287-9271 EXT, 3397 Phone 250-287-9271 ext. 3221 7-d Ceriodaphnia Lemna Minor **Email** craig.schweitzer@nyrstar.com 7-d RBT embryo RBT LC50 nicole.pesonen@nyrstar.com Nicole.pesonen@nyrstar.com SAMPLE ID DATE TIME MATRIX CONTAINER TYPE # OF CONTAINERS COMMENTS ***One extra bucket for acute 11A-RUNOFF 28/10/2019 0845 water plastic 8 toxicity re-run for daphnia Χ X X X X X 89 13 11 5 13 3 3 5 6 G 0 0 10 PROJECT INFORMATION SAMPLE RECEIPT RELIQUINSHED BY (CLIENT) RELIQUINSHED BY (COURIER) Client: Nyrstar Myra Falls Total # Containers: Signature: Signature: 4 Print: Craig Schweitzer-P.O. No.: 4501745322 Good Condition? Print: Company: Nyrstar Myra Falls Ltd Company: Shipped Via: Purolator Matches Schedule? Time/Date: March 5 15:00 __ () _ + 28 7019 Time/Date: RECEIVER SPECIAL INSTRUCTIONS/COMMENTS: RECEIVED BY (LABORATORY) Signature: TH Signature: Please send results to both emails listed above. Print: Tyme Hom N/m Company: Nowhelis Time/Date: Och 29/19 @ 8:57 Print: ***One extra bucket for acute toxicity re-run for daphnia Sample Description: Clear, who couless the odouders tigued with small Company: organic patticulate matter. Time/Date:

la	utilus Envir	onmenta	al								Chain	of Cu	stody (ele	ctronic		
X	British Columbia: 8664 Com Washington: 5009 Pacific H	merce Court, Burna	aby, BC V5A 4			Tel: 604-420-8773 Tel: 253-922-4296										
6	California: 5550 Morehouse	Drive, Suite 150, Sa	an Diego, CA 9	2121		Tel: 858-587-7333										
ſ	Sample Collection By:	CS .						Į.	ANALYS	ES REQU	IRED					
ŀ	oumpio conscion Ly.	Report to:	7. 4			Invoice to:										
ŀ	Company	Nurator Mura I	Falls I td			Nyrstar Myra Falls PO BOX 8000 Campbell River, BC						ECSO		0		
- 1	Address	Nyrstar Myra I PO BOX 8000										<u> </u>		(°)		
- 1	City/State/Zip	Campbell Rive									20	φ		ature		
Ī	Contact Ralph Arndt					Grace Augustin 250-287-9271 EXT. 3221					감	pitata		per		
	Phone 250-287-9271 EXT. 3397										ğ		e E			
	Email		ole.pesonen@nyrstar.com, g.schweitzer@nyrstar.com, ralph.arndt@nyrstar.com				myrafalls.accountspayable@nyrstar.com			ıtry	L.minor	P.Subca		Receipt Temperature (°C)		
								LC50	ia m	ᄪ	T	ا ک				
Î	SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	RBTL	Daphnia magna LC50	SWIM Entry	+	u,				
Ì																
1	11A-RUNOFF	2019-11-13	09:55	water	20 L plastic pail	2×20L	Sample by RA	X	Х	Х	X	X		13.		
2																
3																
4							V						\bot			
5																
6									ļ							
7								-								
8								0,70			2	69	\perp			
9								2.3	23		21	21	++-+			
10								5.	2		19	6				
	PROJECT INFORMATION SAMPLE RECEIPT					RELIQUINSHED BY (CLIENT)					RELIQUINSHED BY (COURIER)					
	Client: Nyrstar Myra I	Falls	Total # Co	Signature: SP					Signature:							
Ī	P.O. No.: 4501745322 Good Condition?					Print: Shane Pollard					Print:					
Ī.	Shipped Via: Purolator Matches Schedule?					Company: Nyrstar Myra Falls Ltd					Company:					
ľ	Simpped via. Furbiad		Wateries C	Time/Date: 09-10-2019 5:30 PM					Time/Date:							
1	SPECIAL INSTRUCTION	ONS/COMMEN	TS:	RECEIVED BY (COURIER)					RECEIVED BY (LABORATORY)							
						Signature:					Signature: TM					
											Print: Tyme					
					Company:					Company: Nouther						
						Time/Date:					Time/Date: 1/20 15/19@ 9:14					

END OF REPORT